This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcom.b | |- B = ( Base ` G ) |
|
| ablcom.p | |- .+ = ( +g ` G ) |
||
| Assertion | cmn32 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | |- B = ( Base ` G ) |
|
| 2 | ablcom.p | |- .+ = ( +g ` G ) |
|
| 3 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 4 | 3 | adantr | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> G e. Mnd ) |
| 5 | simpr1 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 6 | simpr2 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 7 | simpr3 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 8 | 1 2 | cmncom | |- ( ( G e. CMnd /\ Y e. B /\ Z e. B ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 9 | 8 | 3adant3r1 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 10 | 1 2 4 5 6 7 9 | mnd32g | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) |