This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwwlk.v | |- V = ( Vtx ` G ) |
|
| clwwlk.e | |- E = ( Edg ` G ) |
||
| Assertion | clwwlk | |- ( ClWWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlk.v | |- V = ( Vtx ` G ) |
|
| 2 | clwwlk.e | |- E = ( Edg ` G ) |
|
| 3 | df-clwwlk | |- ClWWalks = ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) /\ { ( lastS ` w ) , ( w ` 0 ) } e. ( Edg ` g ) ) } ) |
|
| 4 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 6 | wrdeq | |- ( ( Vtx ` g ) = V -> Word ( Vtx ` g ) = Word V ) |
|
| 7 | 5 6 | syl | |- ( g = G -> Word ( Vtx ` g ) = Word V ) |
| 8 | fveq2 | |- ( g = G -> ( Edg ` g ) = ( Edg ` G ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( g = G -> ( Edg ` g ) = E ) |
| 10 | 9 | eleq2d | |- ( g = G -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) <-> { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) |
| 11 | 10 | ralbidv | |- ( g = G -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) <-> A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) |
| 12 | 9 | eleq2d | |- ( g = G -> ( { ( lastS ` w ) , ( w ` 0 ) } e. ( Edg ` g ) <-> { ( lastS ` w ) , ( w ` 0 ) } e. E ) ) |
| 13 | 11 12 | 3anbi23d | |- ( g = G -> ( ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) /\ { ( lastS ` w ) , ( w ` 0 ) } e. ( Edg ` g ) ) <-> ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) ) ) |
| 14 | 7 13 | rabeqbidv | |- ( g = G -> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) /\ { ( lastS ` w ) , ( w ` 0 ) } e. ( Edg ` g ) ) } = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } ) |
| 15 | id | |- ( G e. _V -> G e. _V ) |
|
| 16 | 1 | fvexi | |- V e. _V |
| 17 | 16 | a1i | |- ( G e. _V -> V e. _V ) |
| 18 | wrdexg | |- ( V e. _V -> Word V e. _V ) |
|
| 19 | rabexg | |- ( Word V e. _V -> { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } e. _V ) |
|
| 20 | 17 18 19 | 3syl | |- ( G e. _V -> { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } e. _V ) |
| 21 | 3 14 15 20 | fvmptd3 | |- ( G e. _V -> ( ClWWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } ) |
| 22 | fvprc | |- ( -. G e. _V -> ( ClWWalks ` G ) = (/) ) |
|
| 23 | noel | |- -. { ( lastS ` w ) , ( w ` 0 ) } e. (/) |
|
| 24 | fvprc | |- ( -. G e. _V -> ( Edg ` G ) = (/) ) |
|
| 25 | 2 24 | eqtrid | |- ( -. G e. _V -> E = (/) ) |
| 26 | 25 | eleq2d | |- ( -. G e. _V -> ( { ( lastS ` w ) , ( w ` 0 ) } e. E <-> { ( lastS ` w ) , ( w ` 0 ) } e. (/) ) ) |
| 27 | 23 26 | mtbiri | |- ( -. G e. _V -> -. { ( lastS ` w ) , ( w ` 0 ) } e. E ) |
| 28 | 27 | adantr | |- ( ( -. G e. _V /\ w e. Word V ) -> -. { ( lastS ` w ) , ( w ` 0 ) } e. E ) |
| 29 | 28 | intn3an3d | |- ( ( -. G e. _V /\ w e. Word V ) -> -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) ) |
| 30 | 29 | ralrimiva | |- ( -. G e. _V -> A. w e. Word V -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) ) |
| 31 | rabeq0 | |- ( { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } = (/) <-> A. w e. Word V -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) ) |
|
| 32 | 30 31 | sylibr | |- ( -. G e. _V -> { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } = (/) ) |
| 33 | 22 32 | eqtr4d | |- ( -. G e. _V -> ( ClWWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } ) |
| 34 | 21 33 | pm2.61i | |- ( ClWWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E /\ { ( lastS ` w ) , ( w ` 0 ) } e. E ) } |