This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). Usage of this theorem is discouraged because it depends on ax-13 . See clelsb1fw not requiring ax-13 , but extra disjoint variables. (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Revised by Thierry Arnoux, 13-Mar-2017) (Proof shortened by Wolf Lammen, 7-May-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clelsb1f.1 | |- F/_ x A |
|
| Assertion | clelsb1f | |- ( [ y / x ] x e. A <-> y e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1f.1 | |- F/_ x A |
|
| 2 | 1 | nfcri | |- F/ x w e. A |
| 3 | 2 | sbco2 | |- ( [ y / x ] [ x / w ] w e. A <-> [ y / w ] w e. A ) |
| 4 | clelsb1 | |- ( [ x / w ] w e. A <-> x e. A ) |
|
| 5 | 4 | sbbii | |- ( [ y / x ] [ x / w ] w e. A <-> [ y / x ] x e. A ) |
| 6 | clelsb1 | |- ( [ y / w ] w e. A <-> y e. A ) |
|
| 7 | 3 5 6 | 3bitr3i | |- ( [ y / x ] x e. A <-> y e. A ) |