This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cicpropd . (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cicpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| cicpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| Assertion | cicpropdlem | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> P e. ( ~=c ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | cicpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | cic1st2nd | |- ( P e. ( ~=c ` C ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
|
| 4 | 3 | adantl | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 5 | cic1st2ndbr | |- ( P e. ( ~=c ` C ) -> ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) ) |
| 7 | 1 | adantr | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 8 | 2 | adantr | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 9 | 7 8 | isopropd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( Iso ` C ) = ( Iso ` D ) ) |
| 10 | 9 | oveqd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( ( 1st ` P ) ( Iso ` C ) ( 2nd ` P ) ) = ( ( 1st ` P ) ( Iso ` D ) ( 2nd ` P ) ) ) |
| 11 | 10 | neeq1d | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( ( ( 1st ` P ) ( Iso ` C ) ( 2nd ` P ) ) =/= (/) <-> ( ( 1st ` P ) ( Iso ` D ) ( 2nd ` P ) ) =/= (/) ) ) |
| 12 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 13 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 14 | cicrcl2 | |- ( ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) -> C e. Cat ) |
|
| 15 | 5 14 | syl | |- ( P e. ( ~=c ` C ) -> C e. Cat ) |
| 16 | 15 | adantl | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> C e. Cat ) |
| 17 | ciclcl | |- ( ( C e. Cat /\ ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) ) -> ( 1st ` P ) e. ( Base ` C ) ) |
|
| 18 | 14 17 | mpancom | |- ( ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) -> ( 1st ` P ) e. ( Base ` C ) ) |
| 19 | 5 18 | syl | |- ( P e. ( ~=c ` C ) -> ( 1st ` P ) e. ( Base ` C ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( 1st ` P ) e. ( Base ` C ) ) |
| 21 | cicrcl | |- ( ( C e. Cat /\ ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) ) -> ( 2nd ` P ) e. ( Base ` C ) ) |
|
| 22 | 14 21 | mpancom | |- ( ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) -> ( 2nd ` P ) e. ( Base ` C ) ) |
| 23 | 5 22 | syl | |- ( P e. ( ~=c ` C ) -> ( 2nd ` P ) e. ( Base ` C ) ) |
| 24 | 23 | adantl | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( 2nd ` P ) e. ( Base ` C ) ) |
| 25 | 12 13 16 20 24 | brcic | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) <-> ( ( 1st ` P ) ( Iso ` C ) ( 2nd ` P ) ) =/= (/) ) ) |
| 26 | eqid | |- ( Iso ` D ) = ( Iso ` D ) |
|
| 27 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 28 | 1 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 30 | 20 29 | eleqtrd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( 1st ` P ) e. ( Base ` D ) ) |
| 31 | 30 | elfvexd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> D e. _V ) |
| 32 | 7 8 16 31 | catpropd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 33 | 16 32 | mpbid | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> D e. Cat ) |
| 34 | 24 29 | eleqtrd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( 2nd ` P ) e. ( Base ` D ) ) |
| 35 | 26 27 33 30 34 | brcic | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( ( 1st ` P ) ( ~=c ` D ) ( 2nd ` P ) <-> ( ( 1st ` P ) ( Iso ` D ) ( 2nd ` P ) ) =/= (/) ) ) |
| 36 | 11 25 35 | 3bitr4d | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( ( 1st ` P ) ( ~=c ` C ) ( 2nd ` P ) <-> ( 1st ` P ) ( ~=c ` D ) ( 2nd ` P ) ) ) |
| 37 | 6 36 | mpbid | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> ( 1st ` P ) ( ~=c ` D ) ( 2nd ` P ) ) |
| 38 | df-br | |- ( ( 1st ` P ) ( ~=c ` D ) ( 2nd ` P ) <-> <. ( 1st ` P ) , ( 2nd ` P ) >. e. ( ~=c ` D ) ) |
|
| 39 | 37 38 | sylib | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> <. ( 1st ` P ) , ( 2nd ` P ) >. e. ( ~=c ` D ) ) |
| 40 | 4 39 | eqeltrd | |- ( ( ph /\ P e. ( ~=c ` C ) ) -> P e. ( ~=c ` D ) ) |