This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpf | |- psi : RR --> RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-chp | |- psi = ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) ) |
|
| 2 | fzfid | |- ( x e. RR -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
|
| 3 | elfznn | |- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
|
| 4 | 3 | adantl | |- ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 5 | vmacl | |- ( n e. NN -> ( Lam ` n ) e. RR ) |
|
| 6 | 4 5 | syl | |- ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 7 | 2 6 | fsumrecl | |- ( x e. RR -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) e. RR ) |
| 8 | 1 7 | fmpti | |- psi : RR --> RR |