This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chfnrn | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ran F C_ U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrnb | |- ( F Fn A -> ( y e. ran F <-> E. x e. A ( F ` x ) = y ) ) |
|
| 2 | 1 | biimpd | |- ( F Fn A -> ( y e. ran F -> E. x e. A ( F ` x ) = y ) ) |
| 3 | eleq1 | |- ( ( F ` x ) = y -> ( ( F ` x ) e. x <-> y e. x ) ) |
|
| 4 | 3 | biimpcd | |- ( ( F ` x ) e. x -> ( ( F ` x ) = y -> y e. x ) ) |
| 5 | 4 | ralimi | |- ( A. x e. A ( F ` x ) e. x -> A. x e. A ( ( F ` x ) = y -> y e. x ) ) |
| 6 | rexim | |- ( A. x e. A ( ( F ` x ) = y -> y e. x ) -> ( E. x e. A ( F ` x ) = y -> E. x e. A y e. x ) ) |
|
| 7 | 5 6 | syl | |- ( A. x e. A ( F ` x ) e. x -> ( E. x e. A ( F ` x ) = y -> E. x e. A y e. x ) ) |
| 8 | 2 7 | sylan9 | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ( y e. ran F -> E. x e. A y e. x ) ) |
| 9 | eluni2 | |- ( y e. U. A <-> E. x e. A y e. x ) |
|
| 10 | 8 9 | imbitrrdi | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ( y e. ran F -> y e. U. A ) ) |
| 11 | 10 | ssrdv | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. x ) -> ran F C_ U. A ) |