This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a symbol such that its concatenation after the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. (Contributed by AV, 5-Oct-2018) (Revised by AV, 9-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccats1pfxeqrex | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> E. s e. V U = ( W ++ <" s "> ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U e. Word V ) |
|
| 2 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( # ` W ) e. NN0 ) |
| 4 | nn0p1nn | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) + 1 ) e. NN ) |
|
| 5 | nngt0 | |- ( ( ( # ` W ) + 1 ) e. NN -> 0 < ( ( # ` W ) + 1 ) ) |
|
| 6 | 3 4 5 | 3syl | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> 0 < ( ( # ` W ) + 1 ) ) |
| 7 | breq2 | |- ( ( # ` U ) = ( ( # ` W ) + 1 ) -> ( 0 < ( # ` U ) <-> 0 < ( ( # ` W ) + 1 ) ) ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( 0 < ( # ` U ) <-> 0 < ( ( # ` W ) + 1 ) ) ) |
| 9 | 6 8 | mpbird | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> 0 < ( # ` U ) ) |
| 10 | hashgt0n0 | |- ( ( U e. Word V /\ 0 < ( # ` U ) ) -> U =/= (/) ) |
|
| 11 | 1 9 10 | syl2anc | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U =/= (/) ) |
| 12 | lswcl | |- ( ( U e. Word V /\ U =/= (/) ) -> ( lastS ` U ) e. V ) |
|
| 13 | 1 11 12 | syl2anc | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( lastS ` U ) e. V ) |
| 14 | ccats1pfxeq | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" ( lastS ` U ) "> ) ) ) |
|
| 15 | s1eq | |- ( s = ( lastS ` U ) -> <" s "> = <" ( lastS ` U ) "> ) |
|
| 16 | 15 | oveq2d | |- ( s = ( lastS ` U ) -> ( W ++ <" s "> ) = ( W ++ <" ( lastS ` U ) "> ) ) |
| 17 | 16 | rspceeqv | |- ( ( ( lastS ` U ) e. V /\ U = ( W ++ <" ( lastS ` U ) "> ) ) -> E. s e. V U = ( W ++ <" s "> ) ) |
| 18 | 13 14 17 | syl6an | |- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> E. s e. V U = ( W ++ <" s "> ) ) ) |