This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw for a version without ax-13 , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvreuvw when possible. (Contributed by NM, 5-Apr-2004) (Revised by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvrmov.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | cbvreuv | |- ( E! x e. A ph <-> E! y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrmov.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | nfv | |- F/ y ph |
|
| 3 | nfv | |- F/ x ps |
|
| 4 | 2 3 1 | cbvreu | |- ( E! x e. A ph <-> E! y e. A ps ) |