This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003) (Proof shortened by Eric Schmidt, 4-Apr-2007) Reduce axiom usage. (Revised by GG, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvopab1v.1 | |- ( x = z -> ( ph <-> ps ) ) |
|
| Assertion | cbvopab1v | |- { <. x , y >. | ph } = { <. z , y >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvopab1v.1 | |- ( x = z -> ( ph <-> ps ) ) |
|
| 2 | opeq1 | |- ( x = z -> <. x , y >. = <. z , y >. ) |
|
| 3 | 2 | eqeq2d | |- ( x = z -> ( w = <. x , y >. <-> w = <. z , y >. ) ) |
| 4 | 3 1 | anbi12d | |- ( x = z -> ( ( w = <. x , y >. /\ ph ) <-> ( w = <. z , y >. /\ ps ) ) ) |
| 5 | 4 | exbidv | |- ( x = z -> ( E. y ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. z , y >. /\ ps ) ) ) |
| 6 | 5 | cbvexvw | |- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ ps ) ) |
| 7 | 6 | abbii | |- { w | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ ps ) } |
| 8 | df-opab | |- { <. x , y >. | ph } = { w | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 9 | df-opab | |- { <. z , y >. | ps } = { w | E. z E. y ( w = <. z , y >. /\ ps ) } |
|
| 10 | 7 8 9 | 3eqtr4i | |- { <. x , y >. | ph } = { <. z , y >. | ps } |