This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| Assertion | caovordg | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| 2 | 1 | ralrimivvva | |- ( ph -> A. x e. S A. y e. S A. z e. S ( x R y <-> ( z F x ) R ( z F y ) ) ) |
| 3 | breq1 | |- ( x = A -> ( x R y <-> A R y ) ) |
|
| 4 | oveq2 | |- ( x = A -> ( z F x ) = ( z F A ) ) |
|
| 5 | 4 | breq1d | |- ( x = A -> ( ( z F x ) R ( z F y ) <-> ( z F A ) R ( z F y ) ) ) |
| 6 | 3 5 | bibi12d | |- ( x = A -> ( ( x R y <-> ( z F x ) R ( z F y ) ) <-> ( A R y <-> ( z F A ) R ( z F y ) ) ) ) |
| 7 | breq2 | |- ( y = B -> ( A R y <-> A R B ) ) |
|
| 8 | oveq2 | |- ( y = B -> ( z F y ) = ( z F B ) ) |
|
| 9 | 8 | breq2d | |- ( y = B -> ( ( z F A ) R ( z F y ) <-> ( z F A ) R ( z F B ) ) ) |
| 10 | 7 9 | bibi12d | |- ( y = B -> ( ( A R y <-> ( z F A ) R ( z F y ) ) <-> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) |
| 11 | oveq1 | |- ( z = C -> ( z F A ) = ( C F A ) ) |
|
| 12 | oveq1 | |- ( z = C -> ( z F B ) = ( C F B ) ) |
|
| 13 | 11 12 | breq12d | |- ( z = C -> ( ( z F A ) R ( z F B ) <-> ( C F A ) R ( C F B ) ) ) |
| 14 | 13 | bibi2d | |- ( z = C -> ( ( A R B <-> ( z F A ) R ( z F B ) ) <-> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
| 15 | 6 10 14 | rspc3v | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( A. x e. S A. y e. S A. z e. S ( x R y <-> ( z F x ) R ( z F y ) ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
| 16 | 2 15 | mpan9 | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |