This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovd.1 | |- ( ph -> A e. S ) |
|
| caovd.2 | |- ( ph -> B e. S ) |
||
| caovd.3 | |- ( ph -> C e. S ) |
||
| caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
| caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
||
| Assertion | caov31d | |- ( ph -> ( ( A F B ) F C ) = ( ( C F B ) F A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovd.1 | |- ( ph -> A e. S ) |
|
| 2 | caovd.2 | |- ( ph -> B e. S ) |
|
| 3 | caovd.3 | |- ( ph -> C e. S ) |
|
| 4 | caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
| 5 | caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
| 6 | 4 1 3 | caovcomd | |- ( ph -> ( A F C ) = ( C F A ) ) |
| 7 | 6 | oveq1d | |- ( ph -> ( ( A F C ) F B ) = ( ( C F A ) F B ) ) |
| 8 | 1 2 3 4 5 | caov32d | |- ( ph -> ( ( A F B ) F C ) = ( ( A F C ) F B ) ) |
| 9 | 3 2 1 4 5 | caov32d | |- ( ph -> ( ( C F B ) F A ) = ( ( C F A ) F B ) ) |
| 10 | 7 8 9 | 3eqtr4d | |- ( ph -> ( ( A F B ) F C ) = ( ( C F B ) F A ) ) |