This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofid0.3 | |- ( ph -> B e. W ) |
||
| caofid1.4 | |- ( ph -> C e. X ) |
||
| caofid1.5 | |- ( ( ph /\ x e. S ) -> ( x R B ) = C ) |
||
| Assertion | caofid1 | |- ( ph -> ( F oF R ( A X. { B } ) ) = ( A X. { C } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofid0.3 | |- ( ph -> B e. W ) |
|
| 4 | caofid1.4 | |- ( ph -> C e. X ) |
|
| 5 | caofid1.5 | |- ( ( ph /\ x e. S ) -> ( x R B ) = C ) |
|
| 6 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 7 | fnconstg | |- ( B e. W -> ( A X. { B } ) Fn A ) |
|
| 8 | 3 7 | syl | |- ( ph -> ( A X. { B } ) Fn A ) |
| 9 | fnconstg | |- ( C e. X -> ( A X. { C } ) Fn A ) |
|
| 10 | 4 9 | syl | |- ( ph -> ( A X. { C } ) Fn A ) |
| 11 | eqidd | |- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
|
| 12 | fvconst2g | |- ( ( B e. W /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) |
|
| 13 | 3 12 | sylan | |- ( ( ph /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) |
| 14 | 5 | ralrimiva | |- ( ph -> A. x e. S ( x R B ) = C ) |
| 15 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 16 | oveq1 | |- ( x = ( F ` w ) -> ( x R B ) = ( ( F ` w ) R B ) ) |
|
| 17 | 16 | eqeq1d | |- ( x = ( F ` w ) -> ( ( x R B ) = C <-> ( ( F ` w ) R B ) = C ) ) |
| 18 | 17 | rspccva | |- ( ( A. x e. S ( x R B ) = C /\ ( F ` w ) e. S ) -> ( ( F ` w ) R B ) = C ) |
| 19 | 14 15 18 | syl2an2r | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) R B ) = C ) |
| 20 | fvconst2g | |- ( ( C e. X /\ w e. A ) -> ( ( A X. { C } ) ` w ) = C ) |
|
| 21 | 4 20 | sylan | |- ( ( ph /\ w e. A ) -> ( ( A X. { C } ) ` w ) = C ) |
| 22 | 19 21 | eqtr4d | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) R B ) = ( ( A X. { C } ) ` w ) ) |
| 23 | 1 6 8 10 11 13 22 | offveq | |- ( ph -> ( F oF R ( A X. { B } ) ) = ( A X. { C } ) ) |