This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bropaex12.1 | |- R = { <. x , y >. | ps } |
|
| Assertion | bropaex12 | |- ( A R B -> ( A e. _V /\ B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bropaex12.1 | |- R = { <. x , y >. | ps } |
|
| 2 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 3 | 1 | eleq2i | |- ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ps } ) |
| 4 | 2 3 | bitri | |- ( A R B <-> <. A , B >. e. { <. x , y >. | ps } ) |
| 5 | elopaelxp | |- ( <. A , B >. e. { <. x , y >. | ps } -> <. A , B >. e. ( _V X. _V ) ) |
|
| 6 | 4 5 | sylbi | |- ( A R B -> <. A , B >. e. ( _V X. _V ) ) |
| 7 | opelxp | |- ( <. A , B >. e. ( _V X. _V ) <-> ( A e. _V /\ B e. _V ) ) |
|
| 8 | 6 7 | sylib | |- ( A R B -> ( A e. _V /\ B e. _V ) ) |