This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by ,R binary relation. (Contributed by Peter Mazsa, 25-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br2coss | |- ( ( A e. V /\ B e. W ) -> ( A ,~ ,~ R B <-> ( [ A ] ,~ R i^i [ B ] ,~ R ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcoss3 | |- ( ( A e. V /\ B e. W ) -> ( A ,~ ,~ R B <-> ( [ A ] `' ,~ R i^i [ B ] `' ,~ R ) =/= (/) ) ) |
|
| 2 | cnvcosseq | |- `' ,~ R = ,~ R |
|
| 3 | 2 | eceq2i | |- [ A ] `' ,~ R = [ A ] ,~ R |
| 4 | 2 | eceq2i | |- [ B ] `' ,~ R = [ B ] ,~ R |
| 5 | 3 4 | ineq12i | |- ( [ A ] `' ,~ R i^i [ B ] `' ,~ R ) = ( [ A ] ,~ R i^i [ B ] ,~ R ) |
| 6 | 5 | neeq1i | |- ( ( [ A ] `' ,~ R i^i [ B ] `' ,~ R ) =/= (/) <-> ( [ A ] ,~ R i^i [ B ] ,~ R ) =/= (/) ) |
| 7 | 1 6 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( A ,~ ,~ R B <-> ( [ A ] ,~ R i^i [ B ] ,~ R ) =/= (/) ) ) |