This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bnlmod

Description: A Banach space is a left module. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bnlmod
|- ( W e. Ban -> W e. LMod )

Proof

Step Hyp Ref Expression
1 bnnlm
 |-  ( W e. Ban -> W e. NrmMod )
2 nlmlmod
 |-  ( W e. NrmMod -> W e. LMod )
3 1 2 syl
 |-  ( W e. Ban -> W e. LMod )