This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of spimt with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 14-Jun-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-spimtv | |- ( ( F/ x ps /\ A. x ( x = y -> ( ph -> ps ) ) ) -> ( A. x ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev | |- E. x x = y |
|
| 2 | exim | |- ( A. x ( x = y -> ( ph -> ps ) ) -> ( E. x x = y -> E. x ( ph -> ps ) ) ) |
|
| 3 | 1 2 | mpi | |- ( A. x ( x = y -> ( ph -> ps ) ) -> E. x ( ph -> ps ) ) |
| 4 | 19.35 | |- ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) ) |
|
| 5 | 3 4 | sylib | |- ( A. x ( x = y -> ( ph -> ps ) ) -> ( A. x ph -> E. x ps ) ) |
| 6 | 19.9t | |- ( F/ x ps -> ( E. x ps <-> ps ) ) |
|
| 7 | 6 | biimpd | |- ( F/ x ps -> ( E. x ps -> ps ) ) |
| 8 | 5 7 | sylan9r | |- ( ( F/ x ps /\ A. x ( x = y -> ( ph -> ps ) ) ) -> ( A. x ph -> ps ) ) |