This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof of ax-9 from Tarski's FOL and dfcleq . For a version not using ax-8 either, see eleq2w2 . This shows that dfcleq is too powerful to be used as a definition instead of df-cleq . Note that ax-ext is also a direct consequence of dfcleq (as an instance of its forward implication). (Contributed by BJ, 24-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax9ALT | |- ( x = y -> ( z e. x -> z e. y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | |- ( x = y <-> A. t ( t e. x <-> t e. y ) ) |
|
| 2 | 1 | biimpi | |- ( x = y -> A. t ( t e. x <-> t e. y ) ) |
| 3 | biimp | |- ( ( t e. x <-> t e. y ) -> ( t e. x -> t e. y ) ) |
|
| 4 | 2 3 | sylg | |- ( x = y -> A. t ( t e. x -> t e. y ) ) |
| 5 | ax8 | |- ( z = t -> ( z e. x -> t e. x ) ) |
|
| 6 | 5 | equcoms | |- ( t = z -> ( z e. x -> t e. x ) ) |
| 7 | ax8 | |- ( t = z -> ( t e. y -> z e. y ) ) |
|
| 8 | 6 7 | imim12d | |- ( t = z -> ( ( t e. x -> t e. y ) -> ( z e. x -> z e. y ) ) ) |
| 9 | 8 | spimvw | |- ( A. t ( t e. x -> t e. y ) -> ( z e. x -> z e. y ) ) |
| 10 | 4 9 | syl | |- ( x = y -> ( z e. x -> z e. y ) ) |