This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive ax-13 from ax13v and Tarski's FOL. This shows that the weakening in ax13v is still sufficient for a complete system. Preferably, use the weaker ax13w to avoid the propagation of ax-13 . (Contributed by NM, 21-Dec-2015) (Proof shortened by Wolf Lammen, 31-Jan-2018) Reduce axiom usage. (Revised by Wolf Lammen, 2-Jun-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax13 | |- ( -. x = y -> ( y = z -> A. x y = z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvinv | |- ( y = z <-> E. w ( w = y /\ w = z ) ) |
|
| 2 | ax13lem1 | |- ( -. x = y -> ( w = y -> A. x w = y ) ) |
|
| 3 | 2 | imp | |- ( ( -. x = y /\ w = y ) -> A. x w = y ) |
| 4 | ax13lem1 | |- ( -. x = z -> ( w = z -> A. x w = z ) ) |
|
| 5 | 4 | imp | |- ( ( -. x = z /\ w = z ) -> A. x w = z ) |
| 6 | ax7v1 | |- ( w = y -> ( w = z -> y = z ) ) |
|
| 7 | 6 | imp | |- ( ( w = y /\ w = z ) -> y = z ) |
| 8 | 7 | alanimi | |- ( ( A. x w = y /\ A. x w = z ) -> A. x y = z ) |
| 9 | 3 5 8 | syl2an | |- ( ( ( -. x = y /\ w = y ) /\ ( -. x = z /\ w = z ) ) -> A. x y = z ) |
| 10 | 9 | an4s | |- ( ( ( -. x = y /\ -. x = z ) /\ ( w = y /\ w = z ) ) -> A. x y = z ) |
| 11 | 10 | ex | |- ( ( -. x = y /\ -. x = z ) -> ( ( w = y /\ w = z ) -> A. x y = z ) ) |
| 12 | 11 | exlimdv | |- ( ( -. x = y /\ -. x = z ) -> ( E. w ( w = y /\ w = z ) -> A. x y = z ) ) |
| 13 | 1 12 | biimtrid | |- ( ( -. x = y /\ -. x = z ) -> ( y = z -> A. x y = z ) ) |
| 14 | 13 | ex | |- ( -. x = y -> ( -. x = z -> ( y = z -> A. x y = z ) ) ) |
| 15 | ax13b | |- ( ( -. x = y -> ( y = z -> A. x y = z ) ) <-> ( -. x = y -> ( -. x = z -> ( y = z -> A. x y = z ) ) ) ) |
|
| 16 | 14 15 | mpbir | |- ( -. x = y -> ( y = z -> A. x y = z ) ) |