This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Negation case. (Contributed by NM, 21-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12indn.1 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| Assertion | ax12indn | |- ( -. A. x x = y -> ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12indn.1 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| 2 | 19.8a | |- ( ( x = y /\ -. ph ) -> E. x ( x = y /\ -. ph ) ) |
|
| 3 | exanali | |- ( E. x ( x = y /\ -. ph ) <-> -. A. x ( x = y -> ph ) ) |
|
| 4 | hbn1 | |- ( -. A. x x = y -> A. x -. A. x x = y ) |
|
| 5 | hbn1 | |- ( -. A. x ( x = y -> ph ) -> A. x -. A. x ( x = y -> ph ) ) |
|
| 6 | con3 | |- ( ( ph -> A. x ( x = y -> ph ) ) -> ( -. A. x ( x = y -> ph ) -> -. ph ) ) |
|
| 7 | 1 6 | syl6 | |- ( -. A. x x = y -> ( x = y -> ( -. A. x ( x = y -> ph ) -> -. ph ) ) ) |
| 8 | 7 | com23 | |- ( -. A. x x = y -> ( -. A. x ( x = y -> ph ) -> ( x = y -> -. ph ) ) ) |
| 9 | 4 5 8 | alrimdh | |- ( -. A. x x = y -> ( -. A. x ( x = y -> ph ) -> A. x ( x = y -> -. ph ) ) ) |
| 10 | 3 9 | biimtrid | |- ( -. A. x x = y -> ( E. x ( x = y /\ -. ph ) -> A. x ( x = y -> -. ph ) ) ) |
| 11 | 2 10 | syl5 | |- ( -. A. x x = y -> ( ( x = y /\ -. ph ) -> A. x ( x = y -> -. ph ) ) ) |
| 12 | 11 | expd | |- ( -. A. x x = y -> ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) ) |