This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Implication case. (Contributed by NM, 21-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ax12indn.1 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| ax12indi.2 | |- ( -. A. x x = y -> ( x = y -> ( ps -> A. x ( x = y -> ps ) ) ) ) |
||
| Assertion | ax12indi | |- ( -. A. x x = y -> ( x = y -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12indn.1 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| 2 | ax12indi.2 | |- ( -. A. x x = y -> ( x = y -> ( ps -> A. x ( x = y -> ps ) ) ) ) |
|
| 3 | 1 | ax12indn | |- ( -. A. x x = y -> ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) ) |
| 4 | 3 | imp | |- ( ( -. A. x x = y /\ x = y ) -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) |
| 5 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
| 6 | 5 | imim2i | |- ( ( x = y -> -. ph ) -> ( x = y -> ( ph -> ps ) ) ) |
| 7 | 6 | alimi | |- ( A. x ( x = y -> -. ph ) -> A. x ( x = y -> ( ph -> ps ) ) ) |
| 8 | 4 7 | syl6 | |- ( ( -. A. x x = y /\ x = y ) -> ( -. ph -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
| 9 | 2 | imp | |- ( ( -. A. x x = y /\ x = y ) -> ( ps -> A. x ( x = y -> ps ) ) ) |
| 10 | ax-1 | |- ( ps -> ( ph -> ps ) ) |
|
| 11 | 10 | imim2i | |- ( ( x = y -> ps ) -> ( x = y -> ( ph -> ps ) ) ) |
| 12 | 11 | alimi | |- ( A. x ( x = y -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) |
| 13 | 9 12 | syl6 | |- ( ( -. A. x x = y /\ x = y ) -> ( ps -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
| 14 | 8 13 | jad | |- ( ( -. A. x x = y /\ x = y ) -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
| 15 | 14 | ex | |- ( -. A. x x = y -> ( x = y -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) ) |