This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If adding a number to a another number yields the other number, the added number must be 0 . This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addid0 | |- ( ( X e. CC /\ Y e. CC ) -> ( ( X + Y ) = X <-> Y = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( X e. CC /\ Y e. CC ) -> X e. CC ) |
|
| 2 | simpr | |- ( ( X e. CC /\ Y e. CC ) -> Y e. CC ) |
|
| 3 | 1 1 2 | subaddd | |- ( ( X e. CC /\ Y e. CC ) -> ( ( X - X ) = Y <-> ( X + Y ) = X ) ) |
| 4 | eqcom | |- ( ( X - X ) = Y <-> Y = ( X - X ) ) |
|
| 5 | simpr | |- ( ( X e. CC /\ Y = ( X - X ) ) -> Y = ( X - X ) ) |
|
| 6 | subid | |- ( X e. CC -> ( X - X ) = 0 ) |
|
| 7 | 6 | adantr | |- ( ( X e. CC /\ Y = ( X - X ) ) -> ( X - X ) = 0 ) |
| 8 | 5 7 | eqtrd | |- ( ( X e. CC /\ Y = ( X - X ) ) -> Y = 0 ) |
| 9 | 8 | ex | |- ( X e. CC -> ( Y = ( X - X ) -> Y = 0 ) ) |
| 10 | 4 9 | biimtrid | |- ( X e. CC -> ( ( X - X ) = Y -> Y = 0 ) ) |
| 11 | 10 | adantr | |- ( ( X e. CC /\ Y e. CC ) -> ( ( X - X ) = Y -> Y = 0 ) ) |
| 12 | 3 11 | sylbird | |- ( ( X e. CC /\ Y e. CC ) -> ( ( X + Y ) = X -> Y = 0 ) ) |
| 13 | oveq2 | |- ( Y = 0 -> ( X + Y ) = ( X + 0 ) ) |
|
| 14 | addrid | |- ( X e. CC -> ( X + 0 ) = X ) |
|
| 15 | 13 14 | sylan9eqr | |- ( ( X e. CC /\ Y = 0 ) -> ( X + Y ) = X ) |
| 16 | 15 | ex | |- ( X e. CC -> ( Y = 0 -> ( X + Y ) = X ) ) |
| 17 | 16 | adantr | |- ( ( X e. CC /\ Y e. CC ) -> ( Y = 0 -> ( X + Y ) = X ) ) |
| 18 | 12 17 | impbid | |- ( ( X e. CC /\ Y e. CC ) -> ( ( X + Y ) = X <-> Y = 0 ) ) |