This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for a class abstraction to be a proper class. The class F can be thought of as an expression in x and the abstraction appearing in the statement as the class of values F as x varies through A . Assuming the antecedents, if that class is a set, then so is the "domain" A . The converse holds without antecedent, see abrexexg . Note that the second antecedent A. x e. A x e. F cannot be translated to A C_ F since F may depend on x . In applications, one may take F = { x } or F = ~P x (see snnex and pwnex respectively, proved from abnex , which is a consequence of abnexg with A = _V ). (Contributed by BJ, 2-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abnexg | |- ( A. x e. A ( F e. V /\ x e. F ) -> ( { y | E. x e. A y = F } e. W -> A e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | |- ( { y | E. x e. A y = F } e. W -> U. { y | E. x e. A y = F } e. _V ) |
|
| 2 | simpl | |- ( ( F e. V /\ x e. F ) -> F e. V ) |
|
| 3 | 2 | ralimi | |- ( A. x e. A ( F e. V /\ x e. F ) -> A. x e. A F e. V ) |
| 4 | dfiun2g | |- ( A. x e. A F e. V -> U_ x e. A F = U. { y | E. x e. A y = F } ) |
|
| 5 | 4 | eleq1d | |- ( A. x e. A F e. V -> ( U_ x e. A F e. _V <-> U. { y | E. x e. A y = F } e. _V ) ) |
| 6 | 5 | biimprd | |- ( A. x e. A F e. V -> ( U. { y | E. x e. A y = F } e. _V -> U_ x e. A F e. _V ) ) |
| 7 | 3 6 | syl | |- ( A. x e. A ( F e. V /\ x e. F ) -> ( U. { y | E. x e. A y = F } e. _V -> U_ x e. A F e. _V ) ) |
| 8 | simpr | |- ( ( F e. V /\ x e. F ) -> x e. F ) |
|
| 9 | 8 | ralimi | |- ( A. x e. A ( F e. V /\ x e. F ) -> A. x e. A x e. F ) |
| 10 | iunid | |- U_ x e. A { x } = A |
|
| 11 | snssi | |- ( x e. F -> { x } C_ F ) |
|
| 12 | 11 | ralimi | |- ( A. x e. A x e. F -> A. x e. A { x } C_ F ) |
| 13 | ss2iun | |- ( A. x e. A { x } C_ F -> U_ x e. A { x } C_ U_ x e. A F ) |
|
| 14 | 12 13 | syl | |- ( A. x e. A x e. F -> U_ x e. A { x } C_ U_ x e. A F ) |
| 15 | 10 14 | eqsstrrid | |- ( A. x e. A x e. F -> A C_ U_ x e. A F ) |
| 16 | ssexg | |- ( ( A C_ U_ x e. A F /\ U_ x e. A F e. _V ) -> A e. _V ) |
|
| 17 | 16 | ex | |- ( A C_ U_ x e. A F -> ( U_ x e. A F e. _V -> A e. _V ) ) |
| 18 | 9 15 17 | 3syl | |- ( A. x e. A ( F e. V /\ x e. F ) -> ( U_ x e. A F e. _V -> A e. _V ) ) |
| 19 | 7 18 | syld | |- ( A. x e. A ( F e. V /\ x e. F ) -> ( U. { y | E. x e. A y = F } e. _V -> A e. _V ) ) |
| 20 | 1 19 | syl5 | |- ( A. x e. A ( F e. V /\ x e. F ) -> ( { y | E. x e. A y = F } e. W -> A e. _V ) ) |