This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted quantification with "at most one", analogous to 2moex . (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2rmorex | |- ( E* x e. A E. y e. B ph -> A. y e. B E* x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | |- F/_ y A |
|
| 2 | nfre1 | |- F/ y E. y e. B ph |
|
| 3 | 1 2 | nfrmow | |- F/ y E* x e. A E. y e. B ph |
| 4 | rmoim | |- ( A. x e. A ( ph -> E. y e. B ph ) -> ( E* x e. A E. y e. B ph -> E* x e. A ph ) ) |
|
| 5 | rspe | |- ( ( y e. B /\ ph ) -> E. y e. B ph ) |
|
| 6 | 5 | ex | |- ( y e. B -> ( ph -> E. y e. B ph ) ) |
| 7 | 6 | ralrimivw | |- ( y e. B -> A. x e. A ( ph -> E. y e. B ph ) ) |
| 8 | 4 7 | syl11 | |- ( E* x e. A E. y e. B ph -> ( y e. B -> E* x e. A ph ) ) |
| 9 | 3 8 | ralrimi | |- ( E* x e. A E. y e. B ph -> A. y e. B E* x e. A ph ) |