This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2pwne | |- ( A e. V -> ~P ~P A =/= A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr | |- -. ~P ~P A ~< ~P ~P A |
|
| 2 | canth2g | |- ( A e. V -> A ~< ~P A ) |
|
| 3 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 4 | canth2g | |- ( ~P A e. _V -> ~P A ~< ~P ~P A ) |
|
| 5 | 3 4 | syl | |- ( A e. V -> ~P A ~< ~P ~P A ) |
| 6 | sdomtr | |- ( ( A ~< ~P A /\ ~P A ~< ~P ~P A ) -> A ~< ~P ~P A ) |
|
| 7 | 2 5 6 | syl2anc | |- ( A e. V -> A ~< ~P ~P A ) |
| 8 | breq1 | |- ( ~P ~P A = A -> ( ~P ~P A ~< ~P ~P A <-> A ~< ~P ~P A ) ) |
|
| 9 | 7 8 | syl5ibrcom | |- ( A e. V -> ( ~P ~P A = A -> ~P ~P A ~< ~P ~P A ) ) |
| 10 | 1 9 | mtoi | |- ( A e. V -> -. ~P ~P A = A ) |
| 11 | 10 | neqned | |- ( A e. V -> ~P ~P A =/= A ) |