This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stfval.t | |- T = ( C Xc. D ) |
|
| 1stfval.b | |- B = ( Base ` T ) |
||
| 1stfval.h | |- H = ( Hom ` T ) |
||
| 1stfval.c | |- ( ph -> C e. Cat ) |
||
| 1stfval.d | |- ( ph -> D e. Cat ) |
||
| 2ndfval.p | |- Q = ( C 2ndF D ) |
||
| Assertion | 2ndfval | |- ( ph -> Q = <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfval.t | |- T = ( C Xc. D ) |
|
| 2 | 1stfval.b | |- B = ( Base ` T ) |
|
| 3 | 1stfval.h | |- H = ( Hom ` T ) |
|
| 4 | 1stfval.c | |- ( ph -> C e. Cat ) |
|
| 5 | 1stfval.d | |- ( ph -> D e. Cat ) |
|
| 6 | 2ndfval.p | |- Q = ( C 2ndF D ) |
|
| 7 | fvex | |- ( Base ` c ) e. _V |
|
| 8 | fvex | |- ( Base ` d ) e. _V |
|
| 9 | 7 8 | xpex | |- ( ( Base ` c ) X. ( Base ` d ) ) e. _V |
| 10 | 9 | a1i | |- ( ( c = C /\ d = D ) -> ( ( Base ` c ) X. ( Base ` d ) ) e. _V ) |
| 11 | simpl | |- ( ( c = C /\ d = D ) -> c = C ) |
|
| 12 | 11 | fveq2d | |- ( ( c = C /\ d = D ) -> ( Base ` c ) = ( Base ` C ) ) |
| 13 | simpr | |- ( ( c = C /\ d = D ) -> d = D ) |
|
| 14 | 13 | fveq2d | |- ( ( c = C /\ d = D ) -> ( Base ` d ) = ( Base ` D ) ) |
| 15 | 12 14 | xpeq12d | |- ( ( c = C /\ d = D ) -> ( ( Base ` c ) X. ( Base ` d ) ) = ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 16 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 17 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 18 | 1 16 17 | xpcbas | |- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` T ) |
| 19 | 18 2 | eqtr4i | |- ( ( Base ` C ) X. ( Base ` D ) ) = B |
| 20 | 15 19 | eqtrdi | |- ( ( c = C /\ d = D ) -> ( ( Base ` c ) X. ( Base ` d ) ) = B ) |
| 21 | simpr | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> b = B ) |
|
| 22 | 21 | reseq2d | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( 2nd |` b ) = ( 2nd |` B ) ) |
| 23 | simpll | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> c = C ) |
|
| 24 | simplr | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> d = D ) |
|
| 25 | 23 24 | oveq12d | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( c Xc. d ) = ( C Xc. D ) ) |
| 26 | 25 1 | eqtr4di | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( c Xc. d ) = T ) |
| 27 | 26 | fveq2d | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( Hom ` ( c Xc. d ) ) = ( Hom ` T ) ) |
| 28 | 27 3 | eqtr4di | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( Hom ` ( c Xc. d ) ) = H ) |
| 29 | 28 | oveqd | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( x ( Hom ` ( c Xc. d ) ) y ) = ( x H y ) ) |
| 30 | 29 | reseq2d | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( 2nd |` ( x ( Hom ` ( c Xc. d ) ) y ) ) = ( 2nd |` ( x H y ) ) ) |
| 31 | 21 21 30 | mpoeq123dv | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( x e. b , y e. b |-> ( 2nd |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) = ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) ) |
| 32 | 22 31 | opeq12d | |- ( ( ( c = C /\ d = D ) /\ b = B ) -> <. ( 2nd |` b ) , ( x e. b , y e. b |-> ( 2nd |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. = <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. ) |
| 33 | 10 20 32 | csbied2 | |- ( ( c = C /\ d = D ) -> [_ ( ( Base ` c ) X. ( Base ` d ) ) / b ]_ <. ( 2nd |` b ) , ( x e. b , y e. b |-> ( 2nd |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. = <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. ) |
| 34 | df-2ndf | |- 2ndF = ( c e. Cat , d e. Cat |-> [_ ( ( Base ` c ) X. ( Base ` d ) ) / b ]_ <. ( 2nd |` b ) , ( x e. b , y e. b |-> ( 2nd |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. ) |
|
| 35 | opex | |- <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. e. _V |
|
| 36 | 33 34 35 | ovmpoa | |- ( ( C e. Cat /\ D e. Cat ) -> ( C 2ndF D ) = <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. ) |
| 37 | 4 5 36 | syl2anc | |- ( ph -> ( C 2ndF D ) = <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. ) |
| 38 | 6 37 | eqtrid | |- ( ph -> Q = <. ( 2nd |` B ) , ( x e. B , y e. B |-> ( 2nd |` ( x H y ) ) ) >. ) |