This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2nd2val | |- ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv | |- ( A e. ( _V X. _V ) <-> E. w E. v A = <. w , v >. ) |
|
| 2 | fveq2 | |- ( A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( { <. <. x , y >. , z >. | z = y } ` <. w , v >. ) ) |
|
| 3 | df-ov | |- ( w { <. <. x , y >. , z >. | z = y } v ) = ( { <. <. x , y >. , z >. | z = y } ` <. w , v >. ) |
|
| 4 | simpr | |- ( ( x = w /\ y = v ) -> y = v ) |
|
| 5 | mpov | |- ( x e. _V , y e. _V |-> y ) = { <. <. x , y >. , z >. | z = y } |
|
| 6 | 5 | eqcomi | |- { <. <. x , y >. , z >. | z = y } = ( x e. _V , y e. _V |-> y ) |
| 7 | vex | |- v e. _V |
|
| 8 | 4 6 7 | ovmpoa | |- ( ( w e. _V /\ v e. _V ) -> ( w { <. <. x , y >. , z >. | z = y } v ) = v ) |
| 9 | 8 | el2v | |- ( w { <. <. x , y >. , z >. | z = y } v ) = v |
| 10 | 3 9 | eqtr3i | |- ( { <. <. x , y >. , z >. | z = y } ` <. w , v >. ) = v |
| 11 | 2 10 | eqtrdi | |- ( A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = v ) |
| 12 | vex | |- w e. _V |
|
| 13 | 12 7 | op2ndd | |- ( A = <. w , v >. -> ( 2nd ` A ) = v ) |
| 14 | 11 13 | eqtr4d | |- ( A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) |
| 15 | 14 | exlimivv | |- ( E. w E. v A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) |
| 16 | 1 15 | sylbi | |- ( A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) |
| 17 | vex | |- x e. _V |
|
| 18 | vex | |- y e. _V |
|
| 19 | 17 18 | pm3.2i | |- ( x e. _V /\ y e. _V ) |
| 20 | ax6ev | |- E. z z = y |
|
| 21 | 19 20 | 2th | |- ( ( x e. _V /\ y e. _V ) <-> E. z z = y ) |
| 22 | 21 | opabbii | |- { <. x , y >. | ( x e. _V /\ y e. _V ) } = { <. x , y >. | E. z z = y } |
| 23 | df-xp | |- ( _V X. _V ) = { <. x , y >. | ( x e. _V /\ y e. _V ) } |
|
| 24 | dmoprab | |- dom { <. <. x , y >. , z >. | z = y } = { <. x , y >. | E. z z = y } |
|
| 25 | 22 23 24 | 3eqtr4ri | |- dom { <. <. x , y >. , z >. | z = y } = ( _V X. _V ) |
| 26 | 25 | eleq2i | |- ( A e. dom { <. <. x , y >. , z >. | z = y } <-> A e. ( _V X. _V ) ) |
| 27 | ndmfv | |- ( -. A e. dom { <. <. x , y >. , z >. | z = y } -> ( { <. <. x , y >. , z >. | z = y } ` A ) = (/) ) |
|
| 28 | 26 27 | sylnbir | |- ( -. A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = (/) ) |
| 29 | rnsnn0 | |- ( A e. ( _V X. _V ) <-> ran { A } =/= (/) ) |
|
| 30 | 29 | biimpri | |- ( ran { A } =/= (/) -> A e. ( _V X. _V ) ) |
| 31 | 30 | necon1bi | |- ( -. A e. ( _V X. _V ) -> ran { A } = (/) ) |
| 32 | 31 | unieqd | |- ( -. A e. ( _V X. _V ) -> U. ran { A } = U. (/) ) |
| 33 | uni0 | |- U. (/) = (/) |
|
| 34 | 32 33 | eqtrdi | |- ( -. A e. ( _V X. _V ) -> U. ran { A } = (/) ) |
| 35 | 28 34 | eqtr4d | |- ( -. A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = U. ran { A } ) |
| 36 | 2ndval | |- ( 2nd ` A ) = U. ran { A } |
|
| 37 | 35 36 | eqtr4di | |- ( -. A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) |
| 38 | 16 37 | pm2.61i | |- ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) |