This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idl0.u | |- I = ( 2Ideal ` R ) |
|
| 2idl1.b | |- B = ( Base ` R ) |
||
| Assertion | 2idl1 | |- ( R e. Ring -> B e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idl0.u | |- I = ( 2Ideal ` R ) |
|
| 2 | 2idl1.b | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 4 | 3 2 | lidl1 | |- ( R e. Ring -> B e. ( LIdeal ` R ) ) |
| 5 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 6 | 5 2 | ridl1 | |- ( R e. Ring -> B e. ( LIdeal ` ( oppR ` R ) ) ) |
| 7 | 4 6 | elind | |- ( R e. Ring -> B e. ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) ) |
| 8 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 9 | 3 8 5 1 | 2idlval | |- I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) |
| 10 | 7 9 | eleqtrrdi | |- ( R e. Ring -> B e. I ) |