This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.23v extended to two variables. (Contributed by NM, 10-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.23vv | |- ( A. x A. y ( ph -> ps ) <-> ( E. x E. y ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v | |- ( A. y ( ph -> ps ) <-> ( E. y ph -> ps ) ) |
|
| 2 | 1 | albii | |- ( A. x A. y ( ph -> ps ) <-> A. x ( E. y ph -> ps ) ) |
| 3 | 19.23v | |- ( A. x ( E. y ph -> ps ) <-> ( E. x E. y ph -> ps ) ) |
|
| 4 | 2 3 | bitri | |- ( A. x A. y ( ph -> ps ) <-> ( E. x E. y ph -> ps ) ) |