This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0er | |- (/) Er (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 | |- Rel (/) |
|
| 2 | df-br | |- ( x (/) y <-> <. x , y >. e. (/) ) |
|
| 3 | noel | |- -. <. x , y >. e. (/) |
|
| 4 | 3 | pm2.21i | |- ( <. x , y >. e. (/) -> y (/) x ) |
| 5 | 2 4 | sylbi | |- ( x (/) y -> y (/) x ) |
| 6 | 3 | pm2.21i | |- ( <. x , y >. e. (/) -> x (/) z ) |
| 7 | 2 6 | sylbi | |- ( x (/) y -> x (/) z ) |
| 8 | 7 | adantr | |- ( ( x (/) y /\ y (/) z ) -> x (/) z ) |
| 9 | noel | |- -. x e. (/) |
|
| 10 | noel | |- -. <. x , x >. e. (/) |
|
| 11 | 9 10 | 2false | |- ( x e. (/) <-> <. x , x >. e. (/) ) |
| 12 | df-br | |- ( x (/) x <-> <. x , x >. e. (/) ) |
|
| 13 | 11 12 | bitr4i | |- ( x e. (/) <-> x (/) x ) |
| 14 | 1 5 8 13 | iseri | |- (/) Er (/) |