This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020) (Revised by Peter Mazsa, 7-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrnresex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres3 | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) | |
| 2 | xrnres2 | ⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) | |
| 3 | 1 2 | eqtr3i | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) |
| 4 | dfres4 | ⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) | |
| 5 | dfres4 | ⊢ ( 𝑆 ↾ 𝐴 ) = ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) | |
| 6 | 4 5 | xrneq12i | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) = ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) | |
| 8 | resexg | ⊢ ( 𝑅 ∈ 𝑊 → ( 𝑅 ↾ 𝐴 ) ∈ V ) | |
| 9 | rnexg | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ V → ran ( 𝑅 ↾ 𝐴 ) ∈ V ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑅 ∈ 𝑊 → ran ( 𝑅 ↾ 𝐴 ) ∈ V ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ran ( 𝑅 ↾ 𝐴 ) ∈ V ) |
| 12 | rnexg | ⊢ ( ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 → ran ( 𝑆 ↾ 𝐴 ) ∈ V ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ran ( 𝑆 ↾ 𝐴 ) ∈ V ) |
| 14 | inxpxrn | ⊢ ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) = ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( ran ( 𝑅 ↾ 𝐴 ) × ran ( 𝑆 ↾ 𝐴 ) ) ) ) | |
| 15 | xrninxpex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ran ( 𝑅 ↾ 𝐴 ) ∈ V ∧ ran ( 𝑆 ↾ 𝐴 ) ∈ V ) → ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( ran ( 𝑅 ↾ 𝐴 ) × ran ( 𝑆 ↾ 𝐴 ) ) ) ) ∈ V ) | |
| 16 | 14 15 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ran ( 𝑅 ↾ 𝐴 ) ∈ V ∧ ran ( 𝑆 ↾ 𝐴 ) ∈ V ) → ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) ∈ V ) |
| 17 | 7 11 13 16 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) ∈ V ) |
| 18 | 6 17 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) ∈ V ) |
| 19 | 3 18 | eqeltrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ∈ V ) |