This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | untint | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 | ⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥 ) | |
| 2 | ssralv | ⊢ ( ∩ 𝐴 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦 ) ) |
| 4 | 3 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀ 𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦 ) |