This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symrelim | ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rncnv | ⊢ ran ◡ 𝑅 = dom 𝑅 | |
| 2 | dfsymrel4 | ⊢ ( SymRel 𝑅 ↔ ( ◡ 𝑅 = 𝑅 ∧ Rel 𝑅 ) ) | |
| 3 | 2 | simplbi | ⊢ ( SymRel 𝑅 → ◡ 𝑅 = 𝑅 ) |
| 4 | 3 | rneqd | ⊢ ( SymRel 𝑅 → ran ◡ 𝑅 = ran 𝑅 ) |
| 5 | 1 4 | eqtr3id | ⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅 ) |