This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3anc.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| syl3anc.3 | ⊢ ( 𝜑 → 𝜃 ) | ||
| syl3Xanc.4 | ⊢ ( 𝜑 → 𝜏 ) | ||
| syl23anc.5 | ⊢ ( 𝜑 → 𝜂 ) | ||
| syl33anc.6 | ⊢ ( 𝜑 → 𝜁 ) | ||
| syl133anc.7 | ⊢ ( 𝜑 → 𝜎 ) | ||
| syl233anc.8 | ⊢ ( 𝜑 → 𝜌 ) | ||
| syl323anc.9 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ) → 𝜇 ) | ||
| Assertion | syl323anc | ⊢ ( 𝜑 → 𝜇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3anc.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | syl3anc.3 | ⊢ ( 𝜑 → 𝜃 ) | |
| 4 | syl3Xanc.4 | ⊢ ( 𝜑 → 𝜏 ) | |
| 5 | syl23anc.5 | ⊢ ( 𝜑 → 𝜂 ) | |
| 6 | syl33anc.6 | ⊢ ( 𝜑 → 𝜁 ) | |
| 7 | syl133anc.7 | ⊢ ( 𝜑 → 𝜎 ) | |
| 8 | syl233anc.8 | ⊢ ( 𝜑 → 𝜌 ) | |
| 9 | syl323anc.9 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ∧ 𝜌 ) ) → 𝜇 ) | |
| 10 | 4 5 | jca | ⊢ ( 𝜑 → ( 𝜏 ∧ 𝜂 ) ) |
| 11 | 1 2 3 10 6 7 8 9 | syl313anc | ⊢ ( 𝜑 → 𝜇 ) |