This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3anc.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| syl3anc.3 | ⊢ ( 𝜑 → 𝜃 ) | ||
| syl3Xanc.4 | ⊢ ( 𝜑 → 𝜏 ) | ||
| syl23anc.5 | ⊢ ( 𝜑 → 𝜂 ) | ||
| syl33anc.6 | ⊢ ( 𝜑 → 𝜁 ) | ||
| syl133anc.7 | ⊢ ( 𝜑 → 𝜎 ) | ||
| syl232anc.8 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ) ) → 𝜌 ) | ||
| Assertion | syl232anc | ⊢ ( 𝜑 → 𝜌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3anc.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | syl3anc.3 | ⊢ ( 𝜑 → 𝜃 ) | |
| 4 | syl3Xanc.4 | ⊢ ( 𝜑 → 𝜏 ) | |
| 5 | syl23anc.5 | ⊢ ( 𝜑 → 𝜂 ) | |
| 6 | syl33anc.6 | ⊢ ( 𝜑 → 𝜁 ) | |
| 7 | syl133anc.7 | ⊢ ( 𝜑 → 𝜎 ) | |
| 8 | syl232anc.8 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ∧ ( 𝜁 ∧ 𝜎 ) ) → 𝜌 ) | |
| 9 | 6 7 | jca | ⊢ ( 𝜑 → ( 𝜁 ∧ 𝜎 ) ) |
| 10 | 1 2 3 4 5 9 8 | syl231anc | ⊢ ( 𝜑 → 𝜌 ) |