This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction associated with suceq . (Contributed by Rohan Ridenour, 8-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suceqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | suceqd | ⊢ ( 𝜑 → suc 𝐴 = suc 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | 1 | sneqd | ⊢ ( 𝜑 → { 𝐴 } = { 𝐵 } ) |
| 3 | 1 2 | uneq12d | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐴 } ) = ( 𝐵 ∪ { 𝐵 } ) ) |
| 4 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 5 | df-suc | ⊢ suc 𝐵 = ( 𝐵 ∪ { 𝐵 } ) | |
| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝜑 → suc 𝐴 = suc 𝐵 ) |