This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the second and the third terms in a difference of a difference and a sum. (Contributed by AV, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| addsub4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| Assertion | subsubadd23 | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) − ( 𝐵 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | addsub4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | 1 2 3 | sub32d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐶 ) − 𝐵 ) ) |
| 6 | 5 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 − 𝐶 ) − 𝐵 ) − 𝐷 ) ) |
| 7 | 1 2 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 8 | 7 3 4 | subsub4d | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( 𝐴 − 𝐵 ) − ( 𝐶 + 𝐷 ) ) ) |
| 9 | 1 3 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 10 | 9 2 4 | subsub4d | ⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐶 ) − 𝐵 ) − 𝐷 ) = ( ( 𝐴 − 𝐶 ) − ( 𝐵 + 𝐷 ) ) ) |
| 11 | 6 8 10 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) − ( 𝐵 + 𝐷 ) ) ) |