This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| subneintrd.4 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| Assertion | subneintrd | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≠ ( 𝐴 − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | subneintrd.4 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 5 | 1 2 3 | subcanad | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 6 | 5 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≠ ( 𝐴 − 𝐶 ) ↔ 𝐵 ≠ 𝐶 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≠ ( 𝐴 − 𝐶 ) ) |