This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantification restricted to a subclass for two quantifiers. ssralv for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 is ssralv2VD without virtual deductions and was automatically derived from ssralv2VD .
| 1:: | |- (. ( A C_ B /\ C C_ D ) ->. ( A C_ B /\ C C_ D ) ). |
| 2:: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x e. B A. y e. D ph ). |
| 3:1: | |- (. ( A C_ B /\ C C_ D ) ->. A C_ B ). |
| 4:3,2: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x e. A A. y e. D ph ). |
| 5:4: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x ( x e. A -> A. y e. D ph ) ). |
| 6:5: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. ( x e. A -> A. y e. D ph ) ). |
| 7:: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph , x e. A ->. x e. A ). |
| 8:7,6: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph , x e. A ->. A. y e. D ph ). |
| 9:1: | |- (. ( A C_ B /\ C C_ D ) ->. C C_ D ). |
| 10:9,8: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph , x e. A ->. A. y e. C ph ). |
| 11:10: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. ( x e. A -> A. y e. C ph ) ). |
| 12:: | |- ( ( A C_ B /\ C C_ D ) -> A. x ( A C_ B /\ C C_ D ) ) |
| 13:: | |- ( A. x e. B A. y e. D ph -> A. x A. x e. B A. y e. D ph ) |
| 14:12,13,11: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x ( x e. A -> A. y e. C ph ) ). |
| 15:14: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x e. A A. y e. C ph ). |
| 16:15: | |- (. ( A C_ B /\ C C_ D ) ->. ( A. x e. B A. y e. D ph -> A. x e. A A. y e. C ph ) ). |
| qed:16: | |- ( ( A C_ B /\ C C_ D ) -> ( A. x e. B A. y e. D ph -> A. x e. A A. y e. C ph ) ) |
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssralv2VD | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ∀ 𝑥 ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) | |
| 2 | hbra1 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ) | |
| 3 | idn1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → 𝐶 ⊆ 𝐷 ) | |
| 5 | 3 4 | e1a | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ 𝐶 ⊆ 𝐷 ) |
| 6 | idn3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
| 7 | simpl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → 𝐴 ⊆ 𝐵 ) | |
| 8 | 3 7 | e1a | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ 𝐴 ⊆ 𝐵 ) |
| 9 | idn2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ) | |
| 10 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
| 11 | 8 9 10 | e12 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ) |
| 12 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
| 13 | 12 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
| 14 | 11 13 | e2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
| 15 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
| 16 | 14 15 | e2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
| 17 | pm2.27 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
| 18 | 6 16 17 | e32 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ ∀ 𝑦 ∈ 𝐷 𝜑 ) |
| 19 | ssralv | ⊢ ( 𝐶 ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) | |
| 20 | 5 18 19 | e13 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ ∀ 𝑦 ∈ 𝐶 𝜑 ) |
| 21 | 20 | in3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
| 22 | 1 2 21 | gen21nv | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
| 23 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) | |
| 24 | 23 | biimpri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) |
| 25 | 22 24 | e2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) |
| 26 | 25 | in2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
| 27 | 26 | in1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |