This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by NM, 26-May-1999) (Revised by Mario Carneiro, 6-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| Assertion | sqrtthi | ⊢ ( 0 ≤ 𝐴 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | remsqsqrt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) | |
| 3 | 1 2 | mpan | ⊢ ( 0 ≤ 𝐴 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |