This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the singleton of the zero vector is the zero subspace. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansn0 | ⊢ ( span ‘ { 0ℎ } ) = 0ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 | ⊢ 0ℋ = { 0ℎ } | |
| 2 | 1 | fveq2i | ⊢ ( span ‘ 0ℋ ) = ( span ‘ { 0ℎ } ) |
| 3 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 4 | spanid | ⊢ ( 0ℋ ∈ Sℋ → ( span ‘ 0ℋ ) = 0ℋ ) | |
| 5 | 3 4 | ax-mp | ⊢ ( span ‘ 0ℋ ) = 0ℋ |
| 6 | 2 5 | eqtr3i | ⊢ ( span ‘ { 0ℎ } ) = 0ℋ |