This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sepex . Use sepex instead. (Contributed by Matthew House, 19-Sep-2025) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sepexlem | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-sep | ⊢ ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) | |
| 2 | bimsc1 | ⊢ ( ( ( 𝜑 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑥 ∈ 𝑧 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) → ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) | |
| 3 | 2 | ex | ⊢ ( ( 𝜑 → 𝑥 ∈ 𝑦 ) → ( ( 𝑥 ∈ 𝑧 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) ) |
| 4 | 3 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) ) |
| 5 | 4 | eximdv | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) → ( ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) ) |
| 6 | 1 5 | mpi | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) |