This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplified definition of substitution when variables are distinct. This is the biconditional strengthening of sb3 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by BJ, 6-Oct-2018) Shorten sb3 . (Revised by Wolf Lammen, 21-Feb-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb3b | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4b | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) | |
| 2 | equs5 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) | |
| 3 | 1 2 | bitr4d | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |