This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unity element of a ring belongs to the base set of the ring, deduction version. (Contributed by SN, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringidcl.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ringidcld.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | ringidcld | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringidcl.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | ringidcld.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | 1 2 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |