This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringdid.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringdid.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| ringdid.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringdid.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringdid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringdid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ringdid.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ringdird | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringdid.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringdid.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | ringdid.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | ringdid.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringdid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ringdid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ringdid.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | 1 2 3 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
| 9 | 4 5 6 7 8 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |