This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reueqdv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | reueqdv | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reueqdv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | reueq1 | ⊢ ( 𝐴 = 𝐵 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |