This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| divneq0.3 | ⊢ 𝐴 ≠ 0 | ||
| divneq0.4 | ⊢ 𝐵 ≠ 0 | ||
| Assertion | rec11ii | ⊢ ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divneq0.3 | ⊢ 𝐴 ≠ 0 | |
| 4 | divneq0.4 | ⊢ 𝐵 ≠ 0 | |
| 5 | 1 2 | rec11i | ⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 6 | 3 4 5 | mp2an | ⊢ ( ( 1 / 𝐴 ) = ( 1 / 𝐵 ) ↔ 𝐴 = 𝐵 ) |