This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv . (Contributed by NM, 17-Nov-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwne | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnss | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴 ) | |
| 2 | eqimss | ⊢ ( 𝒫 𝐴 = 𝐴 → 𝒫 𝐴 ⊆ 𝐴 ) | |
| 3 | 2 | necon3bi | ⊢ ( ¬ 𝒫 𝐴 ⊆ 𝐴 → 𝒫 𝐴 ≠ 𝐴 ) |
| 4 | 1 3 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴 ) |