This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of 5. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo5 | ⊢ ( #p ‘ 5 ) = ; 3 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn | ⊢ 5 ∈ ℕ | |
| 2 | prmonn2 | ⊢ ( 5 ∈ ℕ → ( #p ‘ 5 ) = if ( 5 ∈ ℙ , ( ( #p ‘ ( 5 − 1 ) ) · 5 ) , ( #p ‘ ( 5 − 1 ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 5 ) = if ( 5 ∈ ℙ , ( ( #p ‘ ( 5 − 1 ) ) · 5 ) , ( #p ‘ ( 5 − 1 ) ) ) |
| 4 | 5prm | ⊢ 5 ∈ ℙ | |
| 5 | 4 | iftruei | ⊢ if ( 5 ∈ ℙ , ( ( #p ‘ ( 5 − 1 ) ) · 5 ) , ( #p ‘ ( 5 − 1 ) ) ) = ( ( #p ‘ ( 5 − 1 ) ) · 5 ) |
| 6 | 5m1e4 | ⊢ ( 5 − 1 ) = 4 | |
| 7 | 6 | fveq2i | ⊢ ( #p ‘ ( 5 − 1 ) ) = ( #p ‘ 4 ) |
| 8 | prmo4 | ⊢ ( #p ‘ 4 ) = 6 | |
| 9 | 7 8 | eqtri | ⊢ ( #p ‘ ( 5 − 1 ) ) = 6 |
| 10 | 9 | oveq1i | ⊢ ( ( #p ‘ ( 5 − 1 ) ) · 5 ) = ( 6 · 5 ) |
| 11 | 6t5e30 | ⊢ ( 6 · 5 ) = ; 3 0 | |
| 12 | 10 11 | eqtri | ⊢ ( ( #p ‘ ( 5 − 1 ) ) · 5 ) = ; 3 0 |
| 13 | 5 12 | eqtri | ⊢ if ( 5 ∈ ℙ , ( ( #p ‘ ( 5 − 1 ) ) · 5 ) , ( #p ‘ ( 5 − 1 ) ) ) = ; 3 0 |
| 14 | 3 13 | eqtri | ⊢ ( #p ‘ 5 ) = ; 3 0 |