This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.63 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 25-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.63 | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid | ⊢ ( 𝜑 ∨ ¬ 𝜑 ) | |
| 2 | ordi | ⊢ ( ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 3 | 1 2 | mpbiran | ⊢ ( ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∨ 𝜓 ) ) |
| 4 | 3 | bicomi | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ) |