This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.24 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.24 | ⊢ ( ¬ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) ) | |
| 2 | dfbi3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) | |
| 3 | 1 2 | xchnxbi | ⊢ ( ¬ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) ) |